Hardness of parameter estimation in graphical models

نویسندگان

  • Guy Bresler
  • David Gamarnik
  • Devavrat Shah
چکیده

We consider the problem of learning the canonical parameters specifying an undirected graphical model (Markov random field) from the mean parameters. For graphical models representing a minimal exponential family, the canonical parameters are uniquely determined by the mean parameters, so the problem is feasible in principle. The goal of this paper is to investigate the computational feasibility of this statistical task. Our main result shows that parameter estimation is in general intractable: no algorithm can learn the canonical parameters of a generic pair-wise binary graphical model from the mean parameters in time bounded by a polynomial in the number of variables (unless RP = NP). Indeed, such a result has been believed to be true (see [1]) but no proof was known. Our proof gives a polynomial time reduction from approximating the partition function of the hard-core model, known to be hard, to learning approximate parameters. Our reduction entails showing that the marginal polytope boundary has an inherent repulsive property, which validates an optimization procedure over the polytope that does not use any knowledge of its structure (as required by the ellipsoid method and others).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Parameter Estimation in Spatial Generalized Linear Mixed Models with Skew Gaussian Random Effects using Laplace Approximation

 Spatial generalized linear mixed models are used commonly for modelling non-Gaussian discrete spatial responses. We present an algorithm for parameter estimation of the models using Laplace approximation of likelihood function. In these models, the spatial correlation structure of data is carried out by random effects or latent variables. In most spatial analysis, it is assumed that rando...

متن کامل

Distributed Parameter Estimation in Probabilistic Graphical Models

This paper presents foundational theoretical results on distributed parameter estimation for undirected probabilistic graphical models. It introduces a general condition on composite likelihood decompositions of these models which guarantees the global consistency of distributed estimators, provided the local estimators are consistent.

متن کامل

Methods for Parameter Estimation of the Lorenz Functional Forms and Compare Them Based on Household Expenses Data

In the modern society and specially in our country discussion of poverty, wealth and social justice are the most important arguments of public and private circles. The most important graphical tools which are used to describe the quantity of centralization like wealth in a society is Lorenz curve. In these situations, most of econometricians measure the economic inequalities. In the discrete ca...

متن کامل

Heuristic Process Model Simplification in Frequency Response Domain

Frequency response diagrams of a system include detailed and recognizable information about the structural and parameter effects of the transfer function model of the system. The information are qualitatively and quantitatively obtainable from simultaneous consideration of amplitude ratio and phase information. In this paper, some rules and relationships are presented for making use of frequenc...

متن کامل

Pitman-Closeness of Preliminary Test and Some Classical Estimators Based on Records from Two-Parameter Exponential Distribution

In this paper, we study the performance of estimators of parametersof two-parameter exponential distribution based on upper records. The generalized likelihood ratio (GLR) test was used to generate preliminary test estimator (PTE) for both parameters. We have compared the proposed estimator with maximum likelihood (ML) and unbiased estimators (UE) under mean-squared error (MSE) and Pitman me...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014